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ABSTRACT 

Let M ---- H 3/F be a hyperbolic 3-manifold, where F is a non-elementary 

Kleinian group. It is shown that the length spectrum of M is of un- 

bounded multiplicity. 

1. I n t r o d u c t i o n  

This paper is concerned with length multiplicities in hyperbolic 3-manifolds, or 

more generally, in hyperbolic 3-orbifolds. Let M = H3/F be a hyperbolic 3- 

orbifold, where F is a non-elementary Kleinian group. We say that ~ E F is 

l o x o d r o m i c  if t r27 r [0, 4] (note that this includes "hyperbolic" elements). 

Every loxodromic element 7 C F has an associated c o m p l e x  l eng th ,  denoted 

g0(q) = / + iO, which describes the action of 7 on ]HI3: along its invariant axis 

7 translates a distance / and rotates an angle 0. We say that a complex length 

has m u l t i p l i c i t y  n if it is shared by exactly n conjugacy classes in F. We define 

the c o m p l e x  l e n g t h  s p e c t r u m ,  L(M),  to be the set of complex lengths of 

loxodromic elements of F, counted with multiplicity. 

The rea l  l e n g t h  s p e c t r u m  of M is defined to be the set of lengths of closed 

geodesics of M. The real length spectrum of M is essentially the real part of s 

- -  the only difference being that the classes of 7 and 7 -1 are now equivalent. 
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Since F C PSL2(C), tr(7) is well-defined, up to sign, for any "), E F. The 

connection between traces and lengths is given by the following formula: 

(1) ~0(0,) = 2 cosh-1 (~ff-) .  

Following [GR], we define, for any group F, the t race  class of an element 7 C F 

to be the set of elements 7' E F for which tr P(7') -- tr p('y) for all representations 

p: F --+ SL2(C). We define the s table  mul t ip l i c i ty  of 7 to be the number of 

conjugacy classes in the trace class of % Recall that a representation into SL2(C) 

is called i r reduc ib le  if its image fixes no 1-dimensional subspaces of C 2 . 

We shall prove: 

THEOREM 1.1: Let F be a finitely generated group which admits an infinite 

irreducible representation into SL2(C). Then F has trace classes of unbounded 

stable multiplicity. 

In Section 2 we prove that Theorem 1.1 has the following consequence: 

THEOREM 1.2: Let M = H3/F be a hyperbolic 3-orbifold, where F is a finitely 

generated, non-elementary Kleinian group. Then s  is of unbounded multi- 

plicity. 

COROLLARY 1.3: If  M is a finite-volume, complete hyperbolic 3-manifold, then 

s  is of unbounded multiplicity. 

COROLLARY 1.4: If  M is a finite-volume, complete hyperbolic 3-manifold, then 

the real length spectrum of M is of unbounded multiplicity. 

The analogous statement for hyperbolic surfaces was proved by Randol (see 

[R]). We have reproduced the short proof in Section 3. 

It is well-known that the length spectrum of an arithmetic hyperbolic 3- 

manifold has unbounded multiplicity. In fact, if M is arithmetic, then the mean 

multiplicity, n(s of a length grows exponentially with s (see [M]). 

Recent interest in length multiplicities of hyperbolic 3-manifolds has been 

sparked by connections with chaotic quantum systems. See [Sar] for more 

information. 
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2. T h e o r e m  1.1 impl ies  T h e o r e m  1.2 

In this section, we prove: 

CLAIM: Theorem 1.1 implies Theorem 1.2. 

11 

Proof  of  Claim: By Selberg's Lemma, F has a torsion-free subgroup F' of finite 

index n, say. Any set of more than n elements which are pairwise non-conjugate 

in F' must contain at least two elements which are non-conjugate in F. Also, 

any representation of F restricts to a representation of F'. Therefore the stable 

multiplicities in F' will increase by at most a factor of n. So it is enough to 

consider the case where F is torsion-free. 

Let 7r: SL2(C) -+ PSL2(C) be the natural projection. By [W], a non-elementary, 

torsion-free Kleinian group F admits a faithful representation p: F ~ ~r-l(F) 

such that r p  = id. Note that p preserves trace (up to sign), and that p is 

irreducible, since F is non-elementary. Then, in the case that F contains no 

parabolic elements, Theorem 1.2 is now an easy consequence of Theorem 1.1 and 

Equation (1). 

In general, however, we must make sure that F has trace classes with an 

unbounded number of loxodromic conjugacy classes. The claim will be proved 

once we show that any trace class in F can contain only a bounded number of 

conjugacy classes of parabolic elements. This is done in the following lemma: 

LEMMA 2.1: Let F be a finitely generated Kleinian group. Then there is an 

integer N > 0 such that no trace class of F contains more than N conjugacy 

classes of  parabolic elements. Moreover, i f  F is geometrically finite, then a trace 

class of  F can contain at most two conjugacy class of parabolic elements. 

The proof of this lemma will require some definitions. 

Let F be a finitely generated group. The space  o f  c h a r a c t e r s ,  V(F), is 

the set of all characters of representations of F into SL2(C). By [CS], V(F) 

has the structure of an affine algebraic set defined over Q. The character of a 

representation p is denoted Xp. 

A q u a s i c o n f o r m a l  d e f o r m a t i o n  of  F is a representation of F into PSL2 (C) 

which is induced by a quasiconformal homeomorphism of the Riemann sphere C. 

We say that  a representation of F into SL2 (C) is quasiconformal if it is the lift of 

a quasiconformal deformation of F into PSL2(C). 

Proof  of  Lemma 2.1: Using Selberg's Lemma as above, we may assume F is 

torsion-flee, so the identity representation lifts to a representation Po: F -~ 

SL2(C). 
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By the compact core theorem ([Sc]), F can contain only finitely many conju- 

gacy classes of maximal parabolic subgroups. Let al,/31,. �9 a,~, fin generate the 

conjugacy classes of rank 2 maximal parabolic subgroups and 71, �9 �9 -, 7m generate 

the conjugacy classes of rank 1 maximal parabolic subgroups. 

First, suppose F is finite covolume, so there are no 7i's. We shall handle this 

case with Thurston's hyperbolic Dehn surgery theory. 

Let V0(F) denote the irreducible component of V(F) containing Xpo. Consider 

the map T: V0(F) --+ C n defined by 

7(Xp) = (Xp(al), Xp(a2), �9 �9 Xp(C~,)) = (tr p(al) ,  tr  p ( a2 ) , . . . ,  tr  P(an)). 

By Chapter 5 of [T], the image o f t  covers an open neighborhood U of (2, 2 , . . . ,  2). 

So given two parabolic elements on distinct cusps, we can make one loxodromic 

while the other remains parabolic. In particular, for any i ~ j ,  and any integers 

ml ,  nl ,  m2, n2 (not all 0) there is a representation p for which t r p ( a ~ l ~  1) 
ms n2 a~nl~n, and m~/~2 tr p(aj flj ), so a j  ~.j are not in the same trace class. 

Now suppose we are given two distinct, non-trivial parabolic elements a i "~ fli '*~ 
and ms n2 ai ~i on the same cusp. Suppose also that the elements are not in the 

same cyclic subgroup. Then Thurston's hyperbolic Dehn surgery theory shows 

that  there is a representation taking one of the elements to the identity and the 

other to a loxodromic element, so they are in distinct trace classes. If the two 

elements are in the same cyclic subgroup, then by mapping them to loxodromics 

we see that they are in distinct trace classes, provided they are not inverses of 

each other. 

It follows that we can find characters of representations in T-I (U)  which differ 

on any distinct pair of parabolic elements in F which are not inverses of each 

other, concluding the case where F has finite covolume. 

If F is geometrically finite, then by [Br] there is a quasiconformal deformation 

F' of F and a finite covolume Kleinian group F* for which F' C F*. Since a 

quasiconformal deformation takes parabolics to parabolics, the proof of this case 

now follows from the proof of the finite covolume case. 

In general, if F is any finitely generated Kleinian group, then F has a faithful 

discrete representation p for which p(r)  is geometrically finite, p(ai) and P(~i) 

are parabolic for all i, and p('Yi) is loxodromic for all i; this is Theorem 2.3 of 

[A] and follows from the Scott core theorem and the Thurston uniformization 

theorem. By the geometrically finite case, any two elements of the form a~flff in 

the same trace class of F must be inverses of each other. So a trace class of F can 

contain at most two elements of the form a[/~ff. And since P("/i) is loxodromic, 
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trp(~,~') r trp(7~ ) if [r[ r [s[, so "),~ and 3'~ are not in the same trace class in 

F, and a trace class in F can contain at most 2m elements of the form ~,~" (as i 

goes from 1 to m). Therefore a trace class in F can contain at most 2(m + 1) 

conjugacy classes of parabolic elements, and the lemma is proved. | 

3. B a c k g r o u n d  a n d  t h e  idea  of  the proof 

Suppose p is an irreducible representation of F into SL2(C). We first must find 

elements in p(F) with the same trace. This can be done as in [HI, with the aid 

of simple trace identities. For example, it is proved in [H] that  tr(a2bab -1) = 
tr(ba2b-la) for any elements a and b in SL2(K), where K is any field. Then 

a2bab -1 and ba2b-la are in the same trace class in F. In Section 4, we will use 

these identities to construct sequences of words in F, all in the same trace class. 

The problem, then, is to show that these words are not conjugate in F. This is 

done by finding a homomorphism of F onto a finite group G, and showing that 

the images of the words are not conjugate in G. 

This technique is nicely illustrated in the 2-dimensional case. The proof we 

give of the following theorem is a slight modification of the one which appears in 

[R]. 

THEOREM 3.1 (Randol): Let M = ~2 /F  be a finite-volume hyperbolic surface. 

Then F contains trace classes of  unbounded stable multiplicity, and s  con- 
tains lengths of  unbounded multiplicity. 

Proo~ First, let us assume M is compact. 

F C PSL2(R) is a Fuchsian group, which can be embedded into SL2(R) so that 

traces are preserved up to sign. Then by Equation (1), it is enough to prove that  

F C SL2(R) has trace classes of unbounded stable multiplicity. 

F has the standard presentation: 

F = <  al ,bl ,a2,  b2, . . . ,ag,  bg I (albla~lb~l) . . . (agbga~lb~ 1) = 1 > .  

Note that  there is a natural surjection 

r  ~ *  ~ a2 ~ * . . . *  ~ a g  ~ . 

In particular, al and a2 generate a free group F.  

It follows from [HI that if x and y freely generate a free subgroup F of F, then 

for any N there are words w l , . . . ,  WN in x and y such that 

1. wi(x, y) and wj(x,  y) are in the same trace class Vi, j  <_ N,  
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2. wi(x, y) is not conjugate in F to wj(x, y)Vi ~ j. 
Consider the words wl(al, a2) , . . . ,  wN(al,a2). By 1, we have wi(al, a2) and 

wj(al, a2) are in the same trace class Vi,j. By 2, we have that any distinct pair 

wi (al, a2), wj (al, a2) are not conjugate in F,  hence their images are not conjugate 

in < al > * . . .  * < ag >, hence wi(al, a2) and wj(al, a2) are not conjugate in F. 

This proves the theorem in the compact case. 

If M is non-compact, then F is free. Then the same proof works to show that F 

contains trace classes of unbounded stable multiplicity. The only complication is 

in passing to the statement about s for the elements of the trace class may 

be parabolic. However, F admits faithful representations into SL2(C) for which 

every element becomes loxodromic, and therefore, as in the proof of Lemma 2.1, 

we see that a trace class can contain at most 2n conjugacy classes of parabolic 

elements, where n is the number of cusps, and the result follows. 1 

The proof in three dimensions is more complicated, as hyperbolic 3-manifold 

groups do not generally surject onto non-abelian free groups. For example, if the 

manifold has zero first Betti number, such as a non-zero surgery on the figure- 

eight knot, then its fundamental group cannot surject onto any free group. 

However, hyperbolic 3-manifold groups do surject onto groups of the form 

PSL2(Fp, ), where Fp, denotes the finite field of order pi. In Sections 5 and 6, we 

shall review the construction of these homomorphisms. 

So the idea is to use [HI to construct a sequence of words wi(a, b) in the free 

group F on a and b which are not conjugate in F but which are in the same trace 

class of F.  We map these words into F; their images will be in the same trace 

class of F. Then we map the words from F into a group of the form PSL2(Fp), 

and hope that these images will be non-conjugate in PSL2(Fp), so the words will 

be non-conjugate in F. However, by [HI, the traces of the images are equal (up 

to sign) in PSL2(Fp), and it is nearly true that two elements of PSL2(Fp) are 

conjugate if and only if they have the same trace. Therefore care is needed in 

the choice of the words and the primes. 

4. Trace  i d e n t i t i e s  

All of the trace identities which we shall use are ultimately based on the following 

lemma. 

LEMMA 4.1 (Horowitz): Suppose K is a field, a,b C SL2(K) with t r a  = trb, 

and W(x, y) is a word in x and y. Then t r(W(a,  b)) = tr(W(b, a)). 

Proof'. It is proved in [H] (see also [CS]) that there is a 3-variable polynomial P 
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over K such that t r (W(a,  b)) --- P ( t r  a, tr b, tr ab), for any elements a, b 6 SL2 (K). 

Then tr(W(b, a)) = P ( t r  b, tr a, tr  ba). We have assumed that tr a = tr b, and for 

any matrices in SL2(K), trab = trba, so the lemma follows. | 

In Section 3, we gave the example tr(a2bab -1) = tr(ba2b-la) for any 

elements a,b 6 SL2(K). This follows by setting W(x,y)  = x2y and noting 

that t r (W(a,  bab-1)) = tr(W(bab -1, a)) by Lemma 4.1. 

We shall now construct the required elements of the same trace in p(F) which 

we need to prove Theorem 1.1. We remark that one can construct much simpler 

sequences of elements of equal trace; however, in Section 6 we shall require the 

words to be of this special form in order to prove they are non-conjugate. 

We now recursively define words w,,i, for i _< n + 1. In what follows, we 

routinely supress the dependence of these words on a,b, pi, qi and ki; we will 

explain how to choose them later. 

Let 

Wn(x, y) = (xP"-l+q"y-q" )k"x(xP~-l+q"y-q" )x -1, 

l?Vn(x, y) = x(xP"-l+q"y-qn )k"x-l(xP"-l+q"y-q" ), 

Wl, 1 : W 1 (a,  b) 

: (aPl-l+q, b-ql)k, a(aPl-l+qlb-q,)a-1, 

Wl,2 = I?dl (a, b). 

= a(aP, - l+ql b-q,)kl a-1 (apl-1+ql b-q1), 

w2,1 = w2(wl,1,  Wl,2) 

{~ p2--1-l-q~ -q2"~k2~.. /~..p2-1"l-q2~,,-q2"~ - i  
= ~,u1,1 Wl,2 ) Wl,lkWl,1 Wl,2 )Wl,l~ 

W2, 2 : ~Tv'2(Wl,1, Wl,2) 

{ ~,,P2 -1+q2 ~,,-q2 ~ k2 ~ - I { ~ p2-1+q2~ -q2)~ 
Wl,1k~1,1 u~1,2 / tUl, l \  tUl,l tUl,2 

W2,3 = W2(Wl,2,  w1,1) 

{~ p2-1q-q2~ -q'2hk2W [wP2-1q-q2w-q2\^ -1  
\~1,2 w1,1 ] 1,2/ 1,2 1,1 )Wl,2" 

Assume that Wn-l,i has been defined for i _< n, and that wn-l,1 and w,~-1,2 are 

both words in wn+l-i,1 and wn+l-i,2 for each i with 3 < i < n (note that this 

property is vacuous for n = 2, the base case of the recursion). 

Define 

W.r,., 1 : VV"7~.(W.r l_ l , l , 'Wn_l ,2)  , Wn,2 : ' ~ T n ( W n _ l , l , W n _ l , 2 ) .  
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We claim that  wn,1 and Wn, 2 are both words in w.+2-i,1 and w~+2-i,2 for 

3 < i < n + l .  

Indeed, since w~-l,1 and w,~-l,2 are words in w.+l- i ,1  and w.+l- i ,2  for 3 < i < 

n, then w~,l and w,~,2 are both words in w,~+2-i,~ and w,~+2-~,2 for 4 < i < n + l .  

And for i = 3, it is obvious that  wn,1 and w.,2 are words in w.-1,1 and w.-1,2. 

Then we define: 

wn,i = w[i] for 3 < i < n + 1, rt,1 

where, if w,~,j is a word in w.+2-i,1 and wn+2-i,2, w [i]- denotes the word obtained n J  

by switching wn+2-i,1 and w,~+2-i,2. 

This gives a well-defined sequence of words w~,i for any positive integers n, i < 

n + l .  

The following formulas, which are just formal consequences of our notation, 

will be useful: 

Wn,3 = W [n3,]1 

= W n ( W n - l , 2 , W n - l , 1 )  

_[~.,pn--lTqn~,--q. ~kn~ (~ pn-lA-qn~ -qn ~. - 1  for n > 2, 
- - \Wn- l , 2  Wn- l ,1)  Wn--l,2kWn-l,2 Wn_l,1}'Wn_l, 2 

_w[i] Wn,i -- n,1 

, , [~-1]  [ i - 1 ] ,  
-mVVn[Wn--1,1, Wn--l,2) 

_[(~,,[i--1] ~pn--l+qn[~,,[i-1] ~-qn]kn 
- -L t .~n - -  1,1 ] k~n--l,2] J 

w[i--1] [/. , ,[i--1] ~p.--l+q.{~,,[i--1] ~--q.l(~,,[i--1] "~--1 
n--l,lL~,~n--l,1) kU~n--l,2! J ~ ,~n - - l , 1 ]  , 

for n > 3 and 4 < i < n + 1. 

Regardless of the choices of a, b, pi and qi, we have: 

PROPOSITION 4.2: Let K be a field, and let a,b E SL2(K). Then t r ( w i j )  = 

tr(wi,k) for all j ,  k < i + 1. 

We shall require the following lemma: 

LEMMA 4.3: t r ( W n ( x , y ) )  = tr(i/d~(x, y)) for any n and any x , y  C g .  

Proof: Letting Un(x ,y)  = xk"y,  we have 

tr(Wn(x, y)) = tr(Un(xPn-l+q"?J -qn , x(xP"-l+qny-q~ )x-1)  ) 

---- tr(Un (x (x p" - l+q. y -q .  ) x -  1, x p . -  l+q. y -q .  )) 

(by Lemma 4.1) 

= tr(Wn(x, y)). | 



Vol. 119, 2000 LENGTH MULTIPLICITIES OF HYPERBOLIC 3-MANIFOLDS 17 

Proof of Proposition 4.2: We proceed by induction. By Lemma 4.3, tr(wl,1) = 

tr(wl,2). 

Now, suppose that tr(wn-l , i)  = tr(wn_l,j) for all i , j  <_ n. 

By Lemma 4.3, tr(w~3) = tr(w~,2). For 3 < i < n + 1, recall that  wn,1 = 

U(w~+2-i,1, wn+2-i,2) for some word U; therefore we have: 

tr(wn,1) = tr(U(w~+2-i,t, w~+2-~,2)) for some word U 

tr(wn,i) = tr(w~],l) 

= tr(V(wn+2-~,2, wn+2-i,1)). 

By the inductive hypothesis, tr(w,+2-i,1) = tr(w~+2-~,2), so tr(w~,l) = tr(w,~,~), 

by Lemma 4.1. | 

5. A l g e b r a i c  r e p r e s e n t a t i o n s  

The existence of maps from F onto the groups PSL2 (Fpi) depends on the existence 

of an algebraic representation of F, defined as follows: 

p: F --+ SL2(C) is an a lgebra ic  r e p r e s e n t a t i o n  if it is irreducible and its 

image is an infinite subgroup of SL2((~), where (~ is the algebraic closure of Q. 

Note that this differs slightly from the definition given in [LR]. 

The purpose of this section is to show that any group F satisfying the 

hypotheses of Theorem 1.1 admits an algebraic representation. 

LEMMA 5.1: Let F be a finitely generated gro~ip which admits an infinite 

irreducible representation Po: F ~ SL2(C). Then F admits an algebraic 

representation. 

Proof ofLemma 5.1: Let Vo(F) be the irreducible component of V(F) containing 

the character Xoo of the representation Po (recall the definition of V(F) in Section 

2). 
If dim(Vo(F)) = 0, then it is a well known fact that the coordinates of Xoo 

must be algebraic; in other words the image of Xpo must lie in (~. Then it follows 

from [Ba] that P0 is conjugate to an algebraic representation. 

So suppose dim(V0(F)) > 0. For "y E F, define the function T~: V0(F) --+ C by 

T~(Xp) = Xp(~/) = trp(~,). Recall, by [H] or [CS], that a character is determined 

by the values it takes on a finite set of elements ~'l , . . . ,~'n E F. Then since 

dim(V0(F)) > 0, there is some ~/i for which %~ is non-constant; let us assume it 

is ~/1. Since T. n is a non-constant polynomial map, it is surjective. Now, all the 

characters in some neighborhood U of Xpo will correspond to infinite irreducible 
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representations, r~l (U) is an open set in C, and therefore contains an algebraic 

number ~. Let pl E T~I(C~); Pl is infinite and irreducible, because it is in U. 

Suppose c~ has a minimal polynomial f with coefficients in Z. Consider the 

algebraic subset AI(F) C V0(F) obtained by adding the polynomial condition 

f(r~, (x.)) = 0. AI(F) is non-empty, since it contains Pl. Let VI(F) denote the 

irreducible component of A1 (F) containing Xp~. Note that any character in 171 (F) 

will map 71 to an algebraic number (in fact to a root of f ) .  

If dim(Vl(F)) = 0, then, as above, we have that Pl is conjugate to an algebraic 

representation, and we are done. If dim(Vl(F)) > 0, then we can assume that 

%2 is non-constant on V1, and then, as above, we can find an infinite irreducible 

representation P2 E 171 for which Xp2 is algebraic. Then we form the set V2(F), 

and so on. Eventually, the process will terminate, when 

i. dim(Vm(F)) = 0 for some m, in which case we will get an algebraic 

representation, or 

ii. we have found an infinite irreducible representation p such that Xp(Ti) is 

algebraic for all i <__ n. Since )~p is a polynomial in the )/p(~,~)'s, then XR(~/) 

is algebraic for all ~ E F, and therefore by [Ba], p is conjugate to an algebraic 

representation. | 

6. Lemmas from group theory and number theory 

In this section we prove some lemmas which will be useful later, and we review 

the construction of the homomorphisms of F into PSL2(C) alluded to in Section 

3. For a more complete treatment of this construction, see [LR]. For background 

on algebraic number theory, see IN]. 

Let p be an algebraic representation of F (see Section 5), and let Q(tr p(F)) = 

Q({tr P(7)I 7 E F}). Since p is algebraic, this is a finite extension of Q. It will 

be more convenient to work with the Galois closure, denoted Q(trpF). This is 

also a finite extension, of degree N, say. Let O denote the ring of integers of 

Q(tr p(F)). It follows from the general theory of linear groups that for all but 

finitely many primes p E Z, there is a homomorphism Cp: F --+ PSL2(Fp~ ), where 

Fp~ is the residue field of a prime ideal P C O lying over p. In particular, if p 

spl i ts  c o m p l e t e l y  in Q(tr p(F)) - -  i.e. factors into N distinct prime ideals in O 

- -  then Cp maps into PSL2(Fp). 

Since we shall require maps into groups of the form PSL2(Fp), it will be useful 

to know how many primes in Z split completely in Q(tr p(F)). To give a precise 

answer requires the notion of natural density. 
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Let A be a set of primes in Z. A is said to have n a t u r a l  d e n s i t y  5 if 

lim ( ~ ~  
t-~oo of primes i n Z  < t ]  = & 

We may now state a simple version of the Tchebotarev Density Theorem 

(see [L] p. 128). 

THEOREM 6.1 (Tchebotarev density): Let K be a Galois extension of Q of 

degree N, and let P = {primes in Z which split completely in K}. Then the 

natural density of P is 1/N. In particular, P is infinite. 

In fact, ifp splits completely, then Cp will almost always surject onto PSL2(Fp). 

The following theorem follows directly from the proof of Theorem 1.2 in [LR]: 

THEOREM 6.2 (Long-Reid): Let F be a finitely generated group which admits 

an algebraic representation p. Let P = {primes in Z which split completely in 

Q(tr p(F))}, so that, for all but finitely many p E P, the map Cp: F -+ PSL2(Fp) 

exists (see above). Then for all but finitely many p E 7 ~, Cp is a surjection. 

We will in fact require F to surject onto a product of finite linear groups, 

prompting the following group theoretic lemma: 

LEMMA 6.3: Let F be a group, and supppose F surjects onto a sequence 

G1, . . . ,Gn of distinct, finite simple groups. Then F surjects onto the direct 

product H~=IGi. 

Proof: We are given surjections r F --+ Gi. Let r x . . .  x Cn: F --+ H'~=IGi 
denote the natural map induced by the r Let H denote the image of F under 

r x ' " x C n .  
Let 

(.) l =  N k , ~ g k _ l ~ . . . , ~ N l , ~ g o =  H 

be a chief series for H - -  i.e. each Ni is normal in Ni-x, and each quotient 

Ni-1/Ni is simple. The Jordan-Holder Theorem (see [I], p. 132) guarantees that  

such a series exists, and that the quotient groups are unique up to re-ordering. 

Let 7ri: H --+ Gi be the natural projection map. Since r surjects F onto Gi, 7ri 

surjects H onto Gi. Since H~ kerri  ~ Gi is simple, it follows that H has another 

chief series in which ker z~i is the first term (again see [I]). Therefore for each i, 

Gi must appear as one of the quotients in the series (*). Therefore 

]H I k-1 _>Hi= 0 [Ni/Ni+l[ <_ II?_-l]a,I 

=IH~=IGil. 
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Therefore H = II~=IGi, and so r • "'" • r is onto, proving the lemma. | 

LEMMA 6.4: Let K be a Galois extension of  degree N over Q, and let 7 ) = 

{primes in Z which split completely in K} .  Let P l , . . .  ,Pn-1 E 7) with the prop- 

erty tha t  Pl > 8N and  Pi > 2pi-1 for all 1 < i < n. Then, given any two integers 

r and s, there exist infinitely m a n y  primes in 7 ) which are not congruent to r or 

s mod Pi for any  i < n. 

Proo~ By Theorem 6.1, P has na tura l  density 1 / N  in Z. 

It  follows from a more general version of Theorem 6.1 (see ILl, p. 128) tha t  if 

pi does not  divide r or s, then the set of primes in Z which are congruent  to r 

mod Pi has na tu ra l  density 1/(pi - 1), as does the set congruent  to s rood Pi. 

Therefore, for large integers m we have: 

Iprimes p < m: p E P and p i t  r or s ( m o d p l , . . . ,  or P~-I ) ]  

]primes < m I 

_ Iprimes p < m: p E PI 

Iprimes p < ml 

Iprimes p < m : p -  r or s ( m o d p l , . . . ,  or Pn)I 

Iprimes p < ml 

1 
~ iprime s P < ml [Iprimes p < m: p e PI 

- Iprimes p < m: p -- r ( m o d p l ) l  . . . .  

- Iprimes p < m: p =- r(modpn-1)l  

- Iprimes p < m: p --- s (modp l ) l  

. . . . .  Iprimes p < m: p = s (modpn-1) l ]  

1 1 1 1 1 

N Pl - 1 P~- I  - 1 Pl - 1 Pn-1 - 1 

for some small  e, by the above density s ta tements ,  

1 2 2 

N Pl - 1 P,~-I - 1 

1 2 2 

- N 8 N  2n+3N 
1 1 > -t-~.  

2N N 
1 

•  
= 2 N  

- -  • ~, because Pl > 8N, pi > 2p~-1 

So the rat io is bounded  away from zero, and therefore there must  be infinitely 

many  primes in 7 ) which are not congruent  to either r or s mod pi for any i < n. 

| 
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7. Prov ing  nonconjugacy  

In Section 4 we showed how to construct elements wn,i E F in the same trace 
class. Now we shall prove that these elements are pairwise non-conjugate. 

It will be convenient to have the words written out in explicit form here: 

Wl,X = (a p l - l+q l  b-q1 )kl a(aP l - lTq l  b-ql  ) a - 1 ,  

Wl,2 : a(a  p l - I T q l  b-q1 )kl a-I (ap l - l+ql  b-q1),  

,'. p2-X+qz,,,,-q2~k2. [.,,pz-1+q2. -q2\ .  -1  
W2,1 = ~.Wl, 1 '.~ ) Wl,l~,tOX,1 to1,2 1w1,1, 

[.  p2--1+q2~ -qz "~ k2 ,-- X (.,,P2--1+q2 .,,--q2 ~ 
W2,2 = UJl,II, LVl,X Wl,2 ) Wl,l~,Wl,1 ~1,2 ] ,  

[3] (~ p2--1+q2. -q2"tk2w [wP2-1+q2w-q2"tW-1 
W2,3 : ~2,1 : kWl,2 Wl, 1 ) 1,21, 1,2 1,1 ) 1,2~ 

t pn--l+qn --qn ~k.?j ) /wPn--lWqnw-qn ~W--1 
Wn,1 = (W n_ l ,  1 Wn_l,2)  n-- l , l l ,  n--1,1 n--1,2) n--1,1, 

" ,pn--l+qn. --qn ~knW-1 {.. ,pn-lTqna,l-qn 
Wn,2 = W n - - l , l ~ W n _ l ,  1 Wn_l,2] n _ l , l k t O n _ l ,  1 ~On_l,2), 

t pn--l-bqn --qn ~kn I pn--lq-qn --qn \ --1 
: ( W n _ l ,  2 Wn_l,1)  ZOn_l,2(Wn_l, 2 Wn_l ,1)Wn_l ,2 ,  fo r  n >_ 2, 

_w[ i] Wn,i -- n,l 

_[[ , ,  [i--1] ~pr~-l+q.(.,,,[i--1] ~-qn]kn 
- -Lk t~  kWh--l ,2/  J 

%v[i-1] [(. [i-1] ~p~.-l+q.[{,,,,[i-1] ~_q,~](,,,,[i-1] "~--I 
n-- l , l[kWn--l , l )  \kU~n--l,2J /.I k'-Un--l,l/ 

for n > 3 and 4 < i < n + l,  

Let F be as in the statement of Theorem 1.1, and let p: F --~ SL2(C) be the alge- 

braic representation guaranteed by Lemma 5.1. Let Q(tr p(F)) be as in Section 6, 
let Q(tr p(F)) denote the Galois closure ofQ(tr p(F)), and let N = IQ(tr p(F)): QI. 

For primes p which split completely in Q(tr p(r)), let the map Cp: F -+ PSL2(Fp) 
be as discussed in Section 6. 

Let Q = {primes p E Z for which Cp is a surjection}. Note that Q is infinite 
by Theorem 6.2. The proof of Theorem 1.1 follows from: 

PROPOSITION 7.1: The words wn,~ can be chosen such that for every n there exist 
a . ,  bn E F for which Wn,i (an, bn) is not conjugate to Wn,j (an, bn) or wn,j (an, b,~) -1 
whenever i r j. Indeed, the words wn,i and elements an, bn can be chosen such 
that the following properties hold, for ali n: 

Pl(n): The primes {Pl,P2,. . .  ,Pn} are in Q, pl > 8N, and p~ > 2pi-x for all 
i<_n. 



22 J . D .  MASTERS Isr. J. Math. 

P2(n): For a11i <_ n, Cp,(an)= [o21}2] and Cp,(b,~) = [o21~2]. 
P3(n): For a11i < u and j < n + 1 -  i, Cp,(Wn,j(an, bn)) = id and 

Cp, (wn,n+2-i(an, bn)) I x = [0 1] r id. 

We say that Pi "distinguishes" w,~,j(an, bn) from wn,n+2-i(an, b,). 

For example, taking n = 3, we have that Pl distinguishes w3,4 from w3,3, w3, 2 
and w3,1; P2 distinguishes w3, 3 from w3, 2 and w3j; and P3 distinguishes w3, 2 from 

W3,1. 

Proof  of Proposition 7.1: The proof is by induction. We begin by distinguishing 
w1,1 from Wl,2. We must first pick the prime Pl and the integers ql and kl which 
define w1,1 and wl,2. 

Let ql = 1, let Pl > max{8N, 30} be a prime in Q, and let kl = Pl - 4. 
Pl, ql and kl are now fixed, and will not change for the remainder of the proof. 
Note that PI(1) is immediately satisfied. 

- 1  2 1 --1 2 0 Let al E r ([o C r ([0 so 1/2]) and bl 1/2]), P2(1) is satisfied. 
Note that the images of al and bl under r generate a semi-direct product 

of cyclic groups, that words of the form 1 x [0 1] (x r 0) have order Pl, and that 
words of the form [0 z x-a ] (x r 0, z r 0, 1) have order dividing Pl - 1. This all 
follows from the structure theory of the groups PSL2(Fv), and can be checked by 
explicit computation. 

We have: 

[(~ 1)~(~ o)]~-~ 
CPl(Wl'l(a'b))-~ 0 1/2 0 2 

=[(2011/2/( 1/2002/]v~-4 
11 /2 / (  1/20 02/] (1~2 211  

1 2pl 1- 8 )  1 8 --(o (o 1) 
--( lo ~)~ 

(~o 11~) [(~o 
s~nco (~o 1)  

_-(1 ~ ~1)~-~(~o 1) (1 ~)(1~ _,) 
1/2 o 1 o 2 

has order dividing Pl - 1 
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However, 

(10 01) 

r (Wl,2(a, b)) = 
1 1 ~pl px-4 

(20 1/2)[(20 1/2] (1~2 ~)] (1~2 2 1 ) 

2 1 )pl 

( 1 1 / 2 )  [(0 1 /2 ) (1 /2  ]p1-4 0 

[(~ 11/2)(1~ 2 ~)] 

( :  1/21 ) (1 0 2(P11-4))(1/20 2 1 ) (10 21) 

(1  o 
(1  o 130) 
r 0)1 sincepl>30. 

Therefore Pl distinguishes Wl , l (a l ,  bl) from Wl,2(al, bl), and P3(1) is satisfied. 
Now, suppose that we have picked a,~_l, b,~-i E F and, for i _< n - 1, integers 

ki, Pi, q~ with corresponding words wi,j, so that the following is true: 
Pl(n - 1): The primes {Pl,-.. , P n - 1 }  are in Q, and Pi > 2pi-1 for all i < n - 1. 
P2(n-1): For a l l /<  n - 1 ,  Cpi(an_l)= [2 1}21 and Cp, (bn-1)~-  [2 1~2]" 
P3(n - 1): For all i <_ n - 1 and j < n - i, C p , ( w n - l , j ( a n - l , b n - 1 ) )  = id and 

L I .  

Cpi(Wn_l,n+l_i(an_l,bn_l)) ~- [1 1] r id. 
We shall show how to pick k,~, qn, Pn, an and bn so that Properties Pl(n), 

P2(n) and P3(n) are satisfied. 
Since Q is infinite by Theorem 6.2, Property Pl(n) may be satisfed simply by 

taking pn to be large enough. 
Observe that, by Lemma 6.3, F surjects onto H~=IPSL2(Fp, ). Therefore 

we can satisfy Property P2(n) by picking an E ~1i=1 r 1/2 ) and bn E 

To satisfy Property P3(n), we must show that, for all i _< n and j _< n + 1 - i, 

Cpi(Wn,j) = id  and Cpi(Wn,n+2_i) = [10 1] r id. 
n--1 Let qn = H j = l P j ( P j  - 1). 
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We will break the proof up into two cases; first we will see what happens when 

we reduce by the primes Pi, i < n, which we have already picked, and then we 

show how to pick p~. 

C A S E  1: i < n ] o] Cp~ (an) = 1)2 and Cp~(bn) = 1/2 are contained in the subgroup B C 

PSL2 (Fp~) consisting of matrices whose lower left entry is 0. The order of B is 

Pi(Pi - 1)/2, which divides qn. Therefore, Cp, (U(an, bn) q'~) = id, where U is any 

word on two letters. So we have, for j _< n + 1 - i: 

CASEla:  j = l  

r (,..,1) =r ([w~.-_~+q~ ~ . ~ , d  ko ~ ._  1,1 [~.-_~2 qo ~=_%1 w.~ 1,~ 
. , ( p . - 1 ) ( k . + l ) ,  

"---" q)Pi [ W n - l , 1  ) 

=id, by Property P 3 ( n -  1). 

CASE lb: j = 2 

/ r p ~ - l + q .  - q n  lk .  --1 r pn--l+q~,,--q. ]~ 
CPi(Wn,2):r W n - l , 2 J  Wn-l,l[Wn-l,1 "n-l,2J! 

, (p.-1)(k.+1), 
--gbpl (Wn_i,1 ) 

=id, by Property P 3 ( n -  1). 

CASE lC: j = 3 

, [3] \ Cp, (w.,3) =r tw.,1) 
the definition of wn~!i from Section (recall 4) 

=r (w. (w._2,2, w.,-1,~)) 

____(gpi," (pn-1)(kn-t-1), ~w,~-l,2 ) 

=id, by Property P3(n - 1), since j - 1 = 2 _< n - i. 

CASEld:  4 _ < j _ < n + l - i  

, [ r , ' w [ 3 - - 1 ]  "~pn-l-t-qn(w~.~:!2)-qn]k n :q)Pit[k n--1,1) 
W[J--I] [{~,,[j--1] "~pn--l+qn(a,,[j--1] ~--qnl(~,,[j--1] ~--I~ 

n--l,l[k~n--l,l! kt"n-- l ,2)  JkWn-- l , l !  ] 

=~Pl ((W~--I!I) (pn-1)kn -'l-pn -- 1) 

. , (p ,~ - - l ) (k .+ l ) \  
=q)Pl (Wn--l,j-1 ) 
=id, by Property P3(n - 1), since j - 1 <_ n - i. 
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However, 

_ ~  {w[n+2-i]~ _ _ Cp~(wn,n+2-i) - . y p ~  ,~,1 j, since i < n -  l , so  n + 2 -  i > 3. 

(for i < n -  1) - ' ~  Irr [n+l-i]~-q,,lk, In+l-i]  
- -Wplktk~n-- l ,1  ] [Wn--l,2 ) J WE--l,1 

[(w[ n+l--i]'~pn--lq-qn, [n+l--i]\--qnll [n+l- - i ]~-- l~  
,~-1,1 J (w,~-1,2 ) J(Wn-l,1 ) ) 

--.A {[~ [n+l-i] l(Pn-1)(kn+l)~ 
--Wp~ I,[Wn--l,1 J / 

_~  {w(Pn-1)(kn+l)~ 
--'t'pi ~ n - l , n + l - i  ] 

where x ~ 0 by P rope r ty  P3(n  - 1) 

(for i = n - 1) =r (w[a,]l) 
/r pn-- l'l-qn- --qn ]kn 

=(~Pn-  1 ~.[Wn-- 1,2 Wn-- l , l J  

Wn--1,2[WPnn_--11?qn wnq_nl,1]'ll) nl_ l,2) 

(p , -1)(k ,+l ) ,  
=r ~.w,~- 1,2 ) 

__(1 ~ 

where x r 0 by P rope r ty  P3(n  - 1). 

So to satisfy P rope r ty  Pa(n), we must  pick p,~ E Q and k,~ such that :  

(I) Pi does not divide kn + 1 or p,~ - 1 for i < n. 

Let m be the sum of the exponents  on aN and bn in Wn_l, l(an,  bn). We shall 

also require: 

(II) p,~ > max{2 4m, qn}. 

We set kn = pn _ 22ra. 

We claim tha t  we can pick Pn to satisfy propert ies  (I) and (II). Indeed, (I) is 

equivalent to the s t a t ement  

(I ')  Pn ~ 1 or 22m - 1 (modp i )  for any i < n. 

P rope r ty  P l ( n  - 1) guarantees  tha t  pi > 2pi-1 for all i < n and Pl > 8N,  so 

L e m m a  6.4 implies tha t  (I ')  can be satisfied by infinitely m a n y  pr imes p E Q. 

Therefore  we can pick an arbi t rar i ly  large pr ime pn to satisfy (I) and (II), and 

still satisfy P rope r ty  P l ( n ) .  

This  concludes the proof  in Case 1. 

CASE 2: i -- n 

We now show how to distinguish wE,1 from wE,2. 
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[2 1 ] [0 2 ~ ] it is easy to see that Since (~pn(an) -- 1/2 and Cp.(bn) -- 1 2 , 

[2 0 2rm]. Note2m r l(modp~),sincep~ > Cp. (wn_ 1,1)will have the form 2 4m. 

Therefore, Cp. (wP?_-111) = id, and we have: 

,'l p n - - l T q r ,  --qn ",kn / p n - l + q n ~  - q n  \ .  - - I  Cv.(w~,l) = Cp.ttw~_l,1 w._1,2) wn-l,ltwn_l,a ~n-1,2)~,.,-1,1) 
(2) Cpn q= -q. kn qn -qn -1 = ((~.-1,1~-~,~) ~--1,1(w.-~,1~-1,~)~.-1,1). 
LEMMA 7.2: Ifpn is chosen to be large enough, then 

(wq, w - q n ,  I (1  z )  
P n  k n - - l , 1  n - -1 ,21  = 0 1 ' 

where z ~ O. 

Proof: Recall that pn-i distinguishes wn-l,1 from wn-l,2. Therefore, 

r = lh]' [o 11] PSL2(F ._,) 
Now let Z(1/2) denote the ring obtained by adjoining 1/2 to Z, and let 5 = 

[2 1)2], ~ = [o 1 11] E PSL2(Z(1/2)). There is a well-defined reduction map 

Or._,: PSL2(Z(1/2)) -+ PSL2(Fp._~), since P.-1 # 2. Then 

Opn-1 (Wn-l,l((~, b)) ---Wn-l,l(a, b) 

#~._l,~(a, ~) = e~n_, (~._~,~(~, ~)), 

so wn-l,l(a, b) ~ w.-1,2(5, b) in PSL2(Z(1/2)). 
Using the definition of Wn-l,i one may easily verify that the words have the 

following forms: 

Wn-l,l(a, ---- 2_m , 

Then we compute: 

= ( 2mq~o 

( 2mqn 
# o 

where x r y. 

x )  q~ 
2-m 

x(2 re(q"-1) + 2 re(q"-3) 2 -raq'~W " .  -[- 2 m(3-q") T 2 m(1-qn)) ) 

y(2m(q,~ -1) -[- 2m(q~ -3) 2 -mqn-~- " " " -.[- 2m(3-qn) -{- 2m(1-q~)) ) 

= (  2~o 2-Y~/~ 
~ =(w~_l,2(a, b))q-. 
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Then for a large enough prime pn, these words are different modp,~: 

Then 

Cp,, (w,~,l (a, b)) q'' =Op,, (wn,, (h, b) ) q'' 

(; ~) = 1/v ' for some v, 

Cp,, (w,.2(a, b) ) q" =Op. (w,,,2(h,/~))q" 

(0 "') x, = 1/v where # y' C F I, . 

~ ~ (10 vl~,-,,,,) r (w"' lw"'2)  = 1 

#id, 

completing the proof of Lemma 7.2. II 

Then, returning to Equation (2), we have 

k ~  = 0 1 # id.  

k n z  1 ) ( 2  m w - w  0 ~)(10 ~)(~: ~) 
:(~ ~1z)(lo ~;z) 
__(1 ~ ~,,+2~) 
=(10 (P'*--22m+22m)Z)l by our choice of kn 

:(~ 01) 

So, 

However 

for some w. 

~)pn (Wn,2) ~ r I pn--l+qn --qn ~kn -1  t pn - l+qn  -qn ~\ 
=~)pn~Wn- - l , l~Wn- l , l  Wn--l,2) Wn--l , l~1}n-- l , l  Wn--l ,2}} 

qn -qn kn -1  qn -qn 

=( 2toO 2 -row ) (10 klZ)(20m -w)2 m (10 Z)l 
1 22mklZ + Z ) --(o 
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=(10 (22rn(pn -- 22m) -l-1)Z 

=(1 ~ 
1 

Since pn > 24m, -24m + 1 ~ 0 (modpn). Also, z r 0, so Cpn (w,~,2) r 0. Hence 

Property P3(n) is satisfied, and we are done. | 
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